論 文 Article

φ75mm 供試体を用いたコンクリートの圧縮強度に関する研究

原稿受付 2019 年 6 月 25 日 ものつくり大学紀要 第 9 号 (2019) 18~23

坂本大河*1, 澤本武博*2, 地頭薗博 *3, 中村則清*4, 若林和義*4, 十河茂幸*5, 竹田宣典*5

*1 ものつくり大学大学院 ものつくり研究科
 *2 ものつくり大学 技能工芸学部 建設学科
 *3 ダイヤリフォーム株式会社
 *4 建材試験センター 中央試験所
 *5 近未来コンクリート研究会

A Study on Compressive Strength of Concrete with ϕ 75mm Specimen

Taiga SAKAMOTO^{*1}, Takehiro SAWAMOTO^{*2}, Hiroshi JITOSONO^{*3}, Norikiyo NAKAMURA^{*4}, Kazuyoshi WAKABAYASHI^{*4}, Shigeyuki SOGO^{*5} and Nobufumi TAKEDA^{*5}

^{*1} Graduate School of Technologists, Institute of Technologists

^{*2} Dept. of Building Technologists, Institute of Technologists

*3 DIAREFORM Co., Ltd.

^{*4} Japan Testing Center for Construction Materials (JTCCM), Central Test Laboratory

*5 Near Future Concrete Association

Abstract In this study, for the purpose of rationalization and labor saving of compressive strength test of concrete, we suggest ϕ 75 mm specimen. So, it was examined whether cylindrical specimen of ϕ 75 mm can be used as a specimen for concrete compressive strength test, and compared with ϕ 100 mm specimen. As a result, the compressive strength of ϕ 75 mm specimen was about the same strength as the ϕ 100 mm specimen, when the sealed curing and the underwater curing were carried out. The coefficient of variation of ϕ 75 mm specimen was about 5%. Therefore, it is considered that ϕ 75 mm specimen can be used as management specimen for standard underwater curing and on-site sealed curing specimen.

Key Words : Concrete, Specimen size, Compressive strength, Coefficient of variation, Curing

1. はじめに

コンクリートの圧縮強度試験に用いる供試体は, JIS A 1132 に規定されており,供試体は直径の2 倍の高さをもつ円柱形で,その直径は粗骨材最大 寸法の3 倍以上かつ 100mm 以上と定められてい る¹⁾. そのため,粗骨材最大寸法が20mm あるい は25mm の場合,粗骨材最大寸法の3 倍は60mm あるいは75mm であるが, φ100mm の供試体を使 用しなければならない.しかし, φ100mm 供試体 は、1本の質量が約3.6kg,体積が約1570cm³ある ため、φ75mm 供試体が使用できれば、質量が約 1.5kg,体積が約660cm³と約6割減となる.その ため、従来のφ100mmの供試体と比べて、作業性 の向上、保管時におけるスペースの削減および圧 縮強度試験後に発生する産業廃棄物の削減につな がる.一方、供試体の形状が相似であれば、寸法 が小さくなるほど弱い欠陥をもった要素が介入す

Sign	Cement	W/O	Slump (cm)	Constant		Unit d	conten	t(kg/m³	Test results			
		(%)		(mm)	W	с	S	G	Ad	Slump (cm)	Air (%)	Temperature (°C)
N-1	N	53.5	12	20	168	315	804	1001	3.780	12.0	4.7	24.1
N-2	Ν	45.0	12	20	175	389	720	1006	4.668	10.5	4.8	32.0
BB-1	BB	51.5	12	20	166	323	791	1003	3.786	13.5	4.6	22.7
BB-2	BB	44.0	12	20	174	396	705	1006	4.752	14.0	3.3	29.0

Table 1 Mix proportions of concrete

Fig. 1 Specimen size

Fig. 2 Mold using

る確率が小さくなることにより,強度が高くなる のが一般的な性質である²⁾.しかし,直径が150mm と 100mm の供試体のように寸法が比較的近い場 合には,圧縮強度は同程度であるとみなされてい る³⁾.

本研究では、コンクリートの圧縮強度試験の合 理化および省力化を目的とし、JIS A 1132 に規定 されている供試体の直径は粗骨材最大寸法の3倍 以上という条件を重視した.そして、φ75mmの 円柱供試体がコンクリート圧縮強度試験用供試体 として活用できるかどうか、従来のφ100mmの円 柱供試体の圧縮強度、圧縮強度の変動係数および 見掛け密度を、気中養生、封かん養生および水中 養生を行った場合について比較検討した.

2. 実験概要

2.1 コンクリートの配合

今回の実験で使用したコンクリートの配合を表 1 に示す.セメントには普通ポルトランドセメン ト(以下,Nと称す)および高炉セメントB種(以 下,BBと称す)の2種類を用いた.NおよびBB ともに粗骨材最大寸法 20mm かつスランプ 12cm という条件をそろえた異なる2パターンの配合の レディーミクストコンクリートを使用し,合計4 配合で検討した.

2.2 供試体の作製

供試体は図1に示したように、 ϕ 100×200mm, ϕ 75×150mm の寸法の円柱供試体とした. ϕ 100mm 供試体の型枠はJISA5308 附属書E(規定) 軽量型枠 ϕ に規定されている条件を満たしたプラ スチック製の軽量型枠を使用し、 ϕ 75mm 供試 体には同様の型枠が小型化されたものを使用した. 今回の実験で使用した ϕ 100mm 供試体と ϕ 75mm 供試体の型枠を図2に示す. ϕ 100mm 供試体はJIS A1132 に準じて作製し、 ϕ 75mm 供試体も現行の JIS と同様に、 ϕ 16mm の突き棒を用いて 10cm² に 1 回の割合で 2 層に分けて突き(1 層当り ϕ 100mm 供試体は8回、 ϕ 75mm 供試体は5回突き 棒で突く)、木槌で締め固めた. ϕ 75mm 供試体

2.3 養生方法

供試体は打込み後24~48時間で脱型し,材齢7 日,28日および91日まで養生を行った。温度20℃, 湿度 60%の環境を保持できる恒温恒湿室内にお いて,気中養生を行う供試体および型枠を存置し たままで封かん養生を行う供試体を,それぞれ所 定の材齢まで保管した.また,水温を20℃に保つ ことのできるコンクリート養生水槽内でそれぞれ 所定の材齢まで水中養生を行った。供試体の養生 の様子を図4に示す.

- (1) Placement
- (2) Compaction
- (3) Demolding
- (4) Compressive strength test

(1) Atmospheric curing

Fig. 3 Test for ϕ 75 mm specimen

(2) Sealed curing

Fig. 4 Curing method

(3) Underwater curing

2.4 圧縮強度試験

圧縮強度試験は JIS A 1108 に準拠しアムスラー 式圧縮試験機を用いて行った⁵⁾. φ75mm 供試体 の打込み面の研磨,直径,高さおよび質量の測定 はφ100mm 供試体と同様の方法で行った.供試体 はコンクリートの品質管理の観点から管理強度と なる N の材齢 28 日,そして長期において強さを 発現する材料特性を考慮した BB の材齢 91 日を 9 本ずつ,それ以外の材齢では,3 本ずつ圧縮強度 試験を行い,その平均値を圧縮強度とした.

また、 φ100mm 供試体を小型化した φ75mm 供 試体の圧縮強度のばらつきを表す変動係数および 供試体の見掛け密度に及ぼす影響を検討した.変 動係数はそれぞれの養生条件の供試体3本または 9本からばらつきの度合いを表す標準偏差を不偏 分散で算出し、その数値を圧縮強度の平均値で除 した値の百分率とした.見掛け密度は、供試体研 磨後の直径、高さおよび質量の測定結果から算出 し、それぞれの養生条件の供試体3本または9本 の平均値とした.

3. 実験結果および考察

3.1 圧縮強度試験結果

(1) 気中養生を行った場合

気中養生における φ 100mm 供試体と φ 75mm 供 試体の圧縮強度の関係を図 5 に示す. 図中の実線 は,45°のラインを示し,そのライン付近であれ ば,φ100mm 供試体と φ 75mm 供試体の圧縮強度 が同程度であることを表している.気中養生では, N および BB ともに φ 100mm 供試体に比べて φ 75mm 供試体の圧縮強度は小さくなる傾向にあっ た.これは,供試体の寸法が小さいほど,コンク リートの内部まで乾燥して,強度発現が進みにく くなるためと考えられる.特に BB の圧縮強度が 大きい場合に,この現象が顕著に見受けられ,強 度発現が緩やかな BB においては材齢 91 日と長期 材齢に乾燥の影響が大きく現れたと考えられる.

(2) 封かん養生を行った場合

封かん養生における φ 100mm 供試体と φ 75mm 供試体の圧縮強度の関係を図 6 に示す. 封かん養 生では、型枠の存置により供試体の水分の移動が

あると考えられる.また、 ϕ 100mm 供試体よりも 抑制されたため、 ϕ 100mm 供試体と ϕ 75mm 供試 体の圧縮強度は同程度となり、N および BB とも に寸法の影響はほとんど見受けられなかった.

(3) 水中養生を行った場合

水中養生における ϕ 100mm 供試体と ϕ 75mm 供 試体の圧縮強度の関係を図7に示す.水中養生で は、直径の小さい ϕ 75mm 供試体の方がコンクリ ートの内部まで水分供給が進むことも考えられた が、水中養生期間が7日以上と長いため、 ϕ 100mm 供試体と ϕ 75mm 供試体の圧縮強度は同程度とな り、Nおよび BB ともに寸法の影響はほとんど見 受けられなかった.

3.2 圧縮強度の変動係数と養生の関係

φ100mm 供試体とφ75mm 供試体の圧縮強度の 変動係数の一覧を表2に示す.なお,Nの材齢28 日およびBBの材齢91日の網掛けの数値は供試体 が9本の条件となっている.また,Nの材齢28 日および BB の材齢 91 日の圧縮強度の変動係数を 図 8 に示す.変動係数は、 ϕ 100mm 供試体が 3% 程度に対して、 ϕ 75mm 供試体は 5%程度と若干 大きくなる傾向にあった.しかし、円柱供試体の 変動係数は一般的に 8%程度といわれているため、 ϕ 75mm 供試体は、標準水中養生を行う管理用供 試体および現場封かん養生供試体として活用でき ると考えられる.また、 ϕ 100mm 供試体と ϕ 75mm 供試体の変動係数の差は水中養生において小さく なっている.これは、外部から水分が十分に供給 されたことにより硬化後のコンクリートの品質が 安定したことによると考えられる.

3.3 見掛け密度と養生の関係

φ100mm 供試体とφ75mm 供試体の見掛け密度 の一覧を表3に示す.また,Nの材齢28日および BBの材齢91日の見掛け密度を図9に示す.見掛 け密度は、気中養生、封かん養生、水中養生の順 で大きくなっている.これは、養生の保水性の序

T-11- 2	Configurations	- £		- £		-4
Table 2	Coefficient	OI.	variation	or	compressive	strength
					1	0

Coefficient of variation of compressive strength(%)

													-
Curing method	Diameter (mm)	N-1			N-2				BB-1		BB-2		
		7days	28days	91days									
Atmospheric	100	4.74	4.63	1.22	1.14	2.45	10.65	5.54	2.45	4.40	1.05	1.06	4.01
	75	1.29	4.29	3.64	3.32	6.88	4.80	3.02	4.21	7.18	4.07	3.94	5.09
Sealed	100	2.98	2.10	3.37	2.05	4.38	0.31	3.01	6.94	3.34	1.86	4.07	2.56
	75	7.08	5.50	2.87	3.18	7.99	5.07	5.21	4.99	5.08	1.07	4.76	6.58
Underwater	100	5.25	3.21	1.04	1.66	3.45	3.92	1.58	2.60	4.18	2.40	2.37	2.26
	75	4.51	5.47	11.27	3.67	3.70	1.46	5.29	3.12	3.66	5.91	4.48	3.58

* The colored value in the table is the state of 9 specimens.

Fig 8 Coefficient of variation of compressive strength at state of 9 specimens

Table 3	Apparent	density	of s	pecimen
14010 0	- ppm-one	aenory	· · ·	p • • • • • • • • •

Apparent density of specimen (g/	΄cm³,)
--------------------------------	----	-------	---

Curing	Diameter	N-1			N-2				BB-1		BB-2		
method	(mm)	7days	28days	91days									
Atmospheric	100	2.204	2.182	2.202	2.196	2.191	2.194	2.201	2.179	2.217	2.220	2.205	2.199
	75	2.240	2.181	2.237	2.162	2.189	2.166	2.193	2.201	2.227	2.178	2.192	2.184
Sealed	100	2.288	2.289	2.246	2.260	2.262	2.262	2.259	2.248	2.253	2.248	2.269	2.243
	75	2.250	2.259	2.264	2.217	2.236	2.244	2.254	2.256	2.261	2.240	2.232	2.239
Underwater	100	2.285	2.295	2.287	2.270	2.282	2.281	2.280	2.262	2.267	2.271	2.278	2.273
	75	2.266	2.281	2.280	2.262	2.273	2.271	2.280	2.278	2.273	2.249	2.235	2.239

* The colored value in the table is the state of 9 specimens.

列に沿っており、コンクリートの含水率の影響で φ75mm 供試体の方が見掛け密度は BB-1 を除い て若干小さくなる傾向にあるが、その差はかなり 小さく,同程度と考える.これらのことからφ 75mm 供試体が,見掛け密度にあたえる影響は非 常に少ないと考えられる.

Fig 9 Apparent density of specimen at state of 9 specimens

4. まとめ

普通ポルトランドセメントおよび高炉セメント B 種の 2 種類のセメントを用い, φ75mm 供試体 と従来のφ100mm 供試体の圧縮強度, 圧縮強度の 変動係数および見掛け密度を気中養生, 封かん養 生および水中養生で比較した結果, 以下の(1)~(4) が明らかになった.

- 気中養生を行った場合,乾燥の影響によりφ 75mm 供試体の方がφ100mm 供試体に比べて, 圧縮強度は小さくなった.
- (2) 封かん養生および水中養生を行った場合、φ
 100mm 供試体とφ75mm 供試体の圧縮強度は
 同程度となった.
- (3) 変動係数は φ 100mm 供試体よりも φ 75mm 供
 試体が若干大きくなる傾向にあるが,5%程度
 と通常のばらつきの範囲内であった.

したがって,従来の ϕ 100mm 供試体より質量お よび体積が約 6 割小さい ϕ 75mm 供試体は,標準 水中養生を行う管理用供試体および現場封かん養 生供試体として活用できると考えられる.

謝 辞

本研究を行うにあたり,ダイヤリフォーム株式会社の皆 様ならびにものつくり大学技能工芸学部建設学科澤本研 究室の皆様に多大なる御協力を賜りました.

文 献

- 1) 日本工業規格:JIS A 1132「コンクリートの強度試験 用供試体の作り方」, 2014
- 2) 西林新蔵ほか編:コンクリート工学ハンドブック,朝 倉書店, pp.367-368, 2009
- 3) 日本コンクリート工学協会:コンクリート便覧, 技報 堂出版, p.230, 1996
- 日本工業規格: JIS A 5308「レディーミクストコンク リート」附属書 E(規定)軽量型枠, 2014
- 5) 日本工業規格:JIS A 1108「コンクリートの圧縮強度 試験方法」, 2018