散水によるコンクリート表面の明度変化に基づく構造体コンクリート強度の面評価の試み

```
原稿受付 2013年3月30日
ものつくり大学紀要 第4号 (2013) 61~68
```

前田真佑 ${ }^{* 1}$ ，大塚秀三 ${ }^{* 2}$ ，荒巻卓見 ${ }^{* 3}$ ，高橋宏樹 ${ }^{* 2}$ ，三井実 ${ }^{* 4}$ ，赤谷樹一郎 ${ }^{* 3}$
＊1株式会社アーネストワン（ものつくり大学 技能工芸学部 建設学科卒業生）
＊2ものつくり大学 技能工芸学部 建設学科
＊3ものつくり大学大学院 ものつくり学研究科
＊4ものつくり大学 技能工芸学部 製造学科

Approaches to Surface－evaluation of Compressive Strength of Concrete in Structure Based on Lightness Changing on Concrete Surface by Water Sprinkling

Shinsuke MAEDA ${ }^{*}$ ，Shuzo OTSUKA ${ }^{* 2}$ ，Takumi ARAMAKI ${ }^{* 3}$ ，Hiroki TAKAHASHI ${ }^{*}$ ， Minoru MITSUI ${ }^{* 4}$ ，Kiichiro AKATANI ${ }^{* 3}$
${ }^{* 1}$ Arnest One Co．，Ltd．（Graduate，Dept．of Building Technologists，Institute of Technologists）
${ }^{* 2}$ Dept．of Building Technologists，Institute of Technologists
${ }^{* 3}$ Graduate Student，Graduate School of Technologists，Institute of Technologists
${ }^{* 4}$ Dept．of Manufacturing Technologists，Institute of Technologists

Abstract

This paper is reported the result of approaches to nondestructive surface－evaluation of concrete in structure by comparing with strength of core and estimated strength based on lightness changing of concrete surface by water sprinkling．As a result of using cylinder specimen as a fundamental study，the time that lightness of concrete surface after water sprinkling converges before itself gets shorter as water－cement ratio becomes high．Based on this result，using specimen that simulated concrete in structure，we compared with compressive strength of core specimen and lightness changing on surface of that core and found out that average of lightness changing at range and point of image processing and compressive strength of core specimen have relativity．

Key Words：Lightness，Image processing，Nondestructive inspection，Compressive strength of core specimen， Estimating strength

1．はじめに

構造体コンクリートに要求される品質において，圧縮強度は重要な項目の一つである。構造体コン クリート強度は，一般に，JASS5T－605：2005 ${ }^{11}$ によ り，構造体コンクリートから諸条件に応じた適切

な位置において採取された 3 本以上のコア強度の平均値で定義される。コア強度は，局部的ながら も構造体コンクリート強度を直接的に知るために は有効的な方法である。しかしながら，構造体コ ンクリートは品質にばらつきが生じる材料であり， コア強度においても採取位置や深さにより変動す

るという報告 ${ }^{2), ~ 3), ~ 4) ~ か ゙ さ れ て い る 。 こ の こ と か ら, ~}$局部的に採取されたコア強度を構造体コンクリー ト強度の真値とするには，統計的な観点からすれ ば，議論の余地があると考えられる。

一方で，コンクリートの表面色は，水セメント比により異なることが知られており ${ }^{5)}$ ，この現象を利用してコンクリートの品質評価を試みたいくつ
 の範囲において，散水により経時変化するコンク リート表面の明度の変化量（散水測色試験）を分光測色計によって捉え，コンクリート表層部の物質移動抵抗性を定量的に示し，コンクリートの品質評価の可能性を示唆した。これを参考として，筆者ら ${ }^{8)}$ は，画像解析 ${ }^{99}$ を併用した散水測色試験に より，$\phi 100 \times 200 \mathrm{~mm}$ の供試体の材齢 28 日までの圧縮強度を推定できる可能性を明らかにした。こ の方法を拡張して，より広範囲の面評価ができれ ば，前述のコア強度を用いて構造体コンクリート強度を評価する際の統計的な真偽を解消できる可能性が予見される。

そこで本研究では，既報 ${ }^{8)}$ の続報として，材齢 56および91日まで検討した結果を示すとともに， これを発展させ，構造体コンクリートを模擬した部材（以下，模擬部材とする）において，コア強度 とコンクリート表面の明度変化の相関性について検討を行い，構造体コンクリート強度の面評価を試みた結果を報告する

2．研究の概要

2． 1 本研究の概念

本研究の概念図を Fig． 1 に示す。Model A におい て，JASS5T－605：2005 ${ }^{19}$ の定義により，構造体コン クリートの適切な位置から採取された 3 本のコア強度の平均値を構造体コンクリート強度としてい るが，先述の通り，コンクリートは品質にばらつ きが生じる材料であるため，統計的な観点では一考の余地がある。これを統計的に真値へ収束させ るためには，Model B に示すように，より多くの箇所から採取したコア強度によって評価すること が適切であることは自明であるが，現実的とは言 い難い。

Fig． 1 Concept model of this study

Fig． 2 Flow of image processing

そこで，本研究では，Model Cに示すように，散水による構造体コンクリート表面の明度変化を画像解析 ${ }^{9)}$ によって面的に捉えることにより， Model Bに近しい評価が可能かどうかを模索する ものである．

2.2 画像解析

画像解析のフローを Fig． 2 に示す。コンクリー ト表面は無彩色であるため，色の明暗を表す明度 によって評価する。本研究における画像解析の方法 ${ }^{91}$ は，デジタルカメラにより撮影した画像を幅 640pixel に縮小し画像解析プログラムに取り込み，撮影画像ごとに明暗のばらつきを撮影時に写し込 んだ場合を考慮し，評価の対象となるコンクリー トと同時に写し込んだ白色および黒色サンプルに

Table 1 Materials used in concrete

Materials	Type	Specification
Water （W）	City water	-
Cement （C）	Ordinary Portland cement	Density：3．16g／cm Specific surface area：3280 $\mathrm{cm}^{3} / \mathrm{g}$
Fine aggregate （S）	Pit sand	Air－dry density：2．61g $/ \mathrm{cm}^{3}$ F．M．：2．75 Water absorption rate：2．30\％
Coarse aggregate （G）	Crushed stone	Air－dry density：2．70g $/ \mathrm{cm}^{3}$ F．M．：6．64
Water absorption rate：0．63\％		
Chemical admixture （Ad）	High－range air－entraining and water－reducing admixture	Air－entraining and Polycarboxylic acid compound
	water－reducing admixture	Lignin sulfonate Oxycarbonate

Table 2 Mix proportion of concrete

$\begin{aligned} & \text { W/C } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{s} / \mathrm{a} \\ & (\%) \end{aligned}$	Unit content（ $\mathrm{kg} / \mathrm{m}^{3}$ ）				$\begin{gathered} \mathrm{Ad} \\ (\mathrm{C} \times \%) \end{gathered}$	Test results	
		W	C	S	G		$\begin{aligned} & \text { Air } \\ & (\%) \end{aligned}$	Slump （cm）
30	45.8	170	567	728	863	0.70	3.6	21.5
40	49.7		245	853		0.75	3.8	18.5
50	51.4		340	914		0.75	5.3	17.5
						（0．80）	（5．3）	（18．0）
60	52.7		283	960		0.90	3.9	17.5

（）specimen that simulated concrete in structure
よって明度を補正する。 さらに，撮影画像内で解析範囲を任意で指定後，解析範囲内の全画素にお ける色彩情報をRGB から H（色相），L（明度），S（彩度）に変換し抽出する。本方法は，評価範囲の制限 が無いため，広範囲におけるコンクリート表面の挙動を平均化して把握できることに特長がある。

2.3 明度および圧縮強度の評価方法

コンクリート表面の明度は散水直後に濡れ色と なるため一時的に低くなり，経時的に散水前の明度へ収束する ${ }^{8)}$ 。したがって，散水前のコンクリー ト表面の明度から任意の時間における明度への変化量を $\Delta \mathrm{L}$ とすると，$\Delta \mathrm{L}$ は指数関数的に減少し， 0 に収束すると推測される。よって，$\Delta \mathrm{L}$ は，（1）式により近似できる。

$$
\begin{equation*}
\Delta \mathrm{L}=\mathrm{ae}^{\mathrm{bt}} \tag{1}
\end{equation*}
$$

a, b は定数 $(b<0), t$ は時間 (s) ，e は自然対数の底とする。

Shooting condition Water sprinkling by atomizer
Fig． 3 Shooting condition and water sprinkling by atomizer

Fig． 4 One of analysis photograph and analysis range
（1）式より，散水後コンクリート表面の明度が散水前の明度に収束したとする $\Delta \mathrm{L}$ のしきい値を定 め，$\Delta \mathrm{L}$ がしきい値となる時間 t を Tr とする。算出された Tr により圧縮強度を推定する。

3．供試体による検討

3.1 実験概要

3．1．1 供試体概要

コンクリートの使用材料を Table 1 に，コンク リートの調合およびフレッシュコンクリートの性状を Table 2 に示す。コンクリートの調合は，モ ルタル相の容積の相違による影響を排除するため，単位水量および単位粗骨材かさ容積を一定とした。 また，供試体は $\phi 100 \times 200 \mathrm{~mm}$ の円柱供試体（以下，供試体とする）として，打込み後 2 日で脱型し，材齢91日まで，温度 $20 \pm 2^{\circ} \mathrm{C}$ および相対湿度 $60 \pm 5 \%$ の恒温恒湿室における気中養生とした。

3．1．2 散水および撮影の概要

撮影条件および霧吹きによる散水の概要を
Fig． 3 に示す。散水は供試体底面へ霧吹きによる

W／C 30\％

$\stackrel{\ominus}{\nabla}$

【Age 56 days】

Time（s）

Fig． 5 Relationship between $\triangle \mathrm{L}$ and time by difference of W / C on each age
0.8 ml の噴霧とし，高さ 100 mm から散水後，撮影距離 300 mm および撮影間隔 5 秒でデジタルカメ ラによる定点撮影とした。また，撮影場所は散水 した水分の浸透または逸散が，供試体の強度性状 の相違で温湿度により受ける影響を排除するため，恒温恒湿室とした。光源は，光環境を一定とする ため，CIE（国際照明委員会）に規定される標準光源 D65を使用した。

3．1．3 画像解析による明度および圧縮強度の評価方法

撮影画像の一例および解析範囲をFig． 4 に示す。解析範囲は，供試体の円周を外接円とする正方形 とする。画像解析により算出される明度の変化量 $\Delta \mathrm{L}$ を（1）式より近似し，コンクリート表面の明度 が散水前の明度に収束したとする $\Delta \mathrm{L}$ のしきい値 を 7.5 （明度 255 階調の 3% 相当）とする。 $\triangle \mathrm{L}$ が 7.5 となる時間 t を Tr とし，算出された Tr による圧縮強度の推定値と，JIS A 1108：2006に準拠し得

られる圧縮強度の実測値を比較する。

3．2 結果および考察

3．2．1 ΔL の経時変化

各材齢における水セメント比の相違による $\Delta \mathrm{L}$ の経時変化の一例を Fig． 5 に示す。いずれの材齢 および水セメント比においても，$\Delta \mathrm{L}$ の経時変化 は（1）式に概ね近似できる（以下，$\Delta \mathrm{L}$ 曲線とする）。 また，若干のばらつきはあるものの，水セメント比が高くなるにつれ，散水初期における $\Delta \mathrm{L}$ 曲線 の接線勾配は小さくなる傾向を示すため，水セメ ント比と散水によるコンクリート表面の明度変化 には相関性があることが示唆される。

3．2．2 圧縮強度の推定

圧縮強度の実測値と Tr の関係を Fig． 6 に，圧縮強度の推定値と実測値の関係をFig． 7 に示す。散

Fig． 6 Relationship between compressive strength and Tr

Fig． 7 Relationship between estimated compressive strength and compressive strength

水後コンクリート表面の明度が散水前の明度へ収束した時間 Tr と圧縮強度には材齢の相違によら ず一定の相関性が見て取れる。これにより，Fig． 6 で得られた近似式を圧縮強度の推定式と定め，圧縮強度の実測値と比較すると，Fig． 7 に示すように，特に，高強度域において，概ね $\pm 20 \%$ の範囲内に収 まる。しかし，低強度域においては，ばらつきが大きい。これは，低強度のコンクリートは表層に おける組織構造の形成に精粗が生じ，水分の浸透 または逸散にばらつきが生じたためと考えられる。

4．模擬部材による検討

4． 1 実験概要

4．1．1 模擬部材の概要

コンクリートの使用材料，調合およびフレッ シュコンクリートの性状は前章と同様であり， Table 1 および Table 2 に示す通りである。模擬部材は，W405 \times L $405 \times$ D 205 mm の寸法とし，打込み後2日で脱型し，材齢14日まで気中養生とした。

Fig． 8 Shooting condition
Table 3 Specification of types of analysis range

Fig． 9 Relationship between $\Delta \mathrm{L}$ and time by difference of analysis range and point

4．1．2 散水および撮影の概要

撮影条件を Fig． 8 に示す。散水は，模擬部材の底面へ刷毛による 50 ml の塗布とした。撮影条件 は，撮影距離を 900 mm および撮影間隔を 5 秒とし て，デジタルカメラによる定点撮影とした。撮影環境は，光環境を一定に保つことのできる暗室に おける撮影とし，光源には前章と同様に標準光源 D65を用いた。

4．1．3 画像解析による明度および圧縮強度の評価方法

撮影画像の一例および解析範囲を Table 3 に示 す。解析範囲は，コア 1 本に相当する範囲を Type A，コア 4 本に相当する範囲を Type B，コア 9 本 に相当する範囲を Type Cの 3 水準とする。前章と同様，$\Delta \mathrm{L}$ を（1）式より近似し，コンクリート表面 の明度が散水前の明度に収束したとする $\Delta \mathrm{L}$ のし きい値を 12 （明度 255 階調の 5% 相当）とする。 $\Delta \mathrm{L}$ が 12 となる時間 t を Tr とし， Tr によるコア強度 の推定値と，JIS A 1107：2006およびJIS A 1108： 2006 に準拠したコア強度の実測値を比較する。

4． 2 結果および考察

4．2．1 1 L の経時変化

解析範囲および位置の相違による $\Delta \mathrm{L}$ の経時変化を Fig． 9 に示す。Type A，B，C といずれの解析

範囲においても，$\triangle \mathrm{L}$ 曲線は（1）式に近似し，高い相関性が見られる。また，コア 1 本に相当する解析範囲の Type A における $\Delta \mathrm{L}$ 曲線は，解析位置に よって異なる傾向を示した。したがって，既報 ${ }^{8)}$ で得られた知見より，同一の模擬部材表面におけ る水分移動抵抗性は位置により変動し，対象位置 から採取されるコア供試体の品質も変動すること が予見された。

4．2．2 コア強度と Tr の関係

コア強度と Tr の実測値および統計値を Table 4 に，Type A におけるコア強度と Tr の関係を Fig． 10 に示す。模擬部材から採取した 9 本のコア強度は $\pm 2 \mathrm{~N} / \mathrm{mm}^{2}$ の範囲のばらつきであり，変動係数は 4.52% であるため，ほぼ均一であることが確認で きる。一方で，Type Aにおける Tr の変動係数は 19．73\％とばらつきが大きい。これは，コンクリー ト表面の明度変化の方が，コア強度よりも高感度 に捉え，評価値の範囲が大きくなることに起因す ると考えられる。しかしながら，Table 4 において， Type AおよびCの解析範囲における Tr の平均値 はほぼ同値であるため，解析範囲の相違が，コア強度と $\Delta \mathrm{L}$ の関係に及ぼす影響は小さいと考えら れる。したがって，Fig 10 における近似式を模擬部材におけるコア強度の推定式と定め，コア強度

Table 4 Measured and statistical value of compressive strength and Tr

No．	Type A		Type B		Type C	
	$\begin{gathered} \text { C.S }{ }^{* 1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Tr} \\ \mathrm{r} \end{gathered}$	$\begin{gathered} \text { C.S } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Tr} \\ & \text { (s) } \end{aligned}$	$\begin{gathered} \text { C.S } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Tr} \\ \mathrm{~s}) \end{gathered}$
1	25.4	6660	24.1	7015	24.4	8177
2	23.0	6960	24.4	8424	－	
3	26.0	10670	24.4	7404		
4	23.6	6685	24.0	8755		
5	24.4	7591			\rangle	
6	24.1	8396				
7	25.5	7271				
8	22.6	7164				
9	25.1	11075				
Ave．${ }^{* 2}$	24.4	8052	24.2	7900	24.4	8177
$\begin{gathered} \text { C.V }^{* 3} \\ (\%) \end{gathered}$	4.52	19.73	0.69	9.03	－	－

と比較する。

4．2．3 コア強度の推定

コア強度の推定値と実測値の関係をFig． 11 に示 す。Fig． 10 における近似式により算出されるコア強度の推定値とコア強度の実測値を比較検討した結果，いずれの解析範囲においても，コア強度の推定値と実測値は概ね $\pm 10 \%$ の範囲に分布した。こ れにより，画像解析の評価範囲に制約されない構造体コンクリート強度の面評価の可能性が見出さ れる。しかしながら，コンクリート表面の明度変化により算出される Tr に対するコア強度は相対的に変動しているものの，先述の通り， 9 本のコ ア強度は $\pm 2 \mathrm{~N} / \mathrm{mm}^{2}$ の範囲内におけるばらつきで あり，Tr に関しても単に概ね均質な供試体のばら つきを捉えたに過ぎないことが懸念されるため，更なる検討が必要であると考えられる。

5．まとめ

本研究で得られた知見を以下に示す。
（1）供試体による検討
1）コンクリート表面の明度の変化量を表す $\Delta \mathrm{L}$ は，経時的に指数関数的な減少となる。
2）材齢 56 および 91 日まで検討を行った結果，

Fig． 10 Relationship between compressive strength and Tr（Type A）

Fig． 11 Relationship between estimated compressive strength and compressive strength

既報 ${ }^{8)}$ と同様，散水後コンクリート表面の明度が散水前の明度に収束する時間と圧縮強度 には一定の相関性がある。
3）散水後コンクリート表面の明度が散水前の明度に収束する時間により，特に，高強度域に おいて，概ね $\pm 20 \%$ の範囲で圧縮強度の推定が可能である。
（2）模擬部材による検討
1）明度変化の傾向は， $405 \times 405 \mathrm{~mm}$ の模擬部材の表面においても，その位置によって異なる。
2）解析範囲は，コア強度と $\Delta \mathrm{L}$ の関係に影響を及ぼさないため，解析範囲を大きくしても，同程度の推定値を得られる可能性がある。
3）散水後コンクリート表面の明度が散水前の明度へ収束する時間により，コア強度を概ね $\pm 10 \%$ の範囲で推定可能であり，構造体コンク リート強度の面評価の可能性が予見された。

6．今後の展望

今後，さらにデータの蓄積を行い統計的な信憑性を高めるとともに，以下の項目について検討す る予定である。
1）低強度コンクリートにおけるコンクリート表面の明度変化と圧縮強度の相関性のばらつき を低減させる方法を検討する。
2）模擬部材の表面積を広げ，画像解析の評価範囲の制限がないという特長を生かした構造体 コンクリート強度の面評価を検討する。
3）模擬部材の強度および養生方法を変え，構造体コンクリート表面の組織構造の形成状態の相違を加味した面評価を検討する。

謝 辞

本研究は，平成 24 年度公益財団法人 LIXIL 住生活財団研究助成金（研究代表者：高橋宏樹教授，共同研究者：大塚秀三准教授，三井実講師）により実施した。実験に際して，ものつくり大学技能工芸学部建設学科大塚研究室の卒研生より助力を得 た。ここに，関係各位に謝意を表する。

文 献

1）日本建築学会：建築工事標準仕様書•同解説， JASS 5 鉄筋コンクリート工事，pp．703－704， 2009

2）大塚秀三ほか：各種セメントを用いた高強度 コンクリートの模擬柱部材における打込み面 からの採取深さがコア強度と変動に及ぼす影響，日本建築学会構造系論文集，No．659， pp．23－30， 2011.1
3）大木崇輔ほか：コア採取位置および採取方法 の違いが高強度コンクリートのコア強度に及 ぼす影響，コンクリート工学年次論文報告集， Vol．30，No．1，pp．423－428， 2008
4）松橋宏治ほか：実態調査に基づく既設構造物 のコンクリート強度分布に関する考察，コン クリート工学年次論文報告集，Vol．28，No．2， pp1627－1632， 2006
5）劉霊芝ほか：高感性打放しコンクリートに関 する研究，日本建築学会学術講演梗概集 A－1分冊，pp．1201－1206
6）例えば，藤森繁ほか：モルタルの色彩値と力学特性の関係に関する実験的研究，日本建築学会構造系論文集，No．555，pp．17－24， 2002
7）西尾壮平ほか：表面色によるコンクリート表層部の物質移動抵抗性の非破壊評価に関する基礎的検討，コンクリート工学年次論文報告集，Vol．33，No．1，pp1751－1756， 2011
8）前田真佑ほか：コンクリート表面の水分移動 に基づく明度変化による圧縮強度の推定に関 する基礎的研究，日本建築仕上学会学術講演会研究発表論文集，pp．183－186， 2012
9）大塚秀三ほか：画像解析手法による打放しコ ンクリートの色むら評価その 1，2，日本建築学会学術講演梗概集 A－1 分冊，pp．189－192， 2006

